skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Robertson-Anderson, Rae M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We describe approaches, results and insights from multi-year hackathons to enable their use in soft matter training and innovation. 
    more » « less
    Free, publicly-accessible full text available July 10, 2026
  2. M13 phage are a novel microrheological probe that are sensitive to polymer relaxations, capturing DNA dynamics and revealing universal scaling behaviors across the unentangled and entangled regimes. 
    more » « less
    Free, publicly-accessible full text available January 29, 2026
  3. The transport of macromolecules, such as DNA, through the cytoskeleton is critical to wide-ranging cellular processes from cytoplasmic streaming to transcription. The rigidity and steric hindrances imparted by the network of filaments comprising the cytoskeleton often leads to anomalous subdiffusion, while active processes such as motor-driven restructuring can induce athermal superdiffusion. Understanding the interplay between these seemingly antagonistic contributions to intracellular dynamics remains a grand challenge. Here, we use single-molecule tracking to show that the transport of large linear and relaxed circular DNA through motor-driven microtubule networks can be non-Gaussian and multimodal, with the degree and spatiotemporal scales over which these features manifest depending nontrivially on the state of activity and DNA topology. For example, active network restructuring increases caging and non-Gaussian transport modes of linear DNA, while dampening these mechanisms for circular DNA. We further discover that circular DNA molecules exhibit either markedly enhanced subdiffusion or superdiffusion compared to their linear counterparts, in the absence or presence of kinesin activity, indicative of microtubules threading circular DNA. This strong coupling leads to both stalling and directed transport, providing a direct route towards parsing distinct contributions to transport and determining the impact of coupling on the transport signatures. More generally, leveraging macromolecular topology as a route to programming molecular interactions and transport dynamics is an elegant yet largely overlooked mechanism that cells may exploit for intracellular trafficking, streaming, and compartmentalization. This mechanism could be harnessed for the design of self-regulating, sensing, and reconfigurable biomimetic matter. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  4. The unique mechanical behaviors of actin–vimentin composites in both linear and nonlinear regimes are shaped by the complex interactions among actin entanglements, vimentin crosslinking, and poroelastic properties. 
    more » « less
  5. Abstract How local stresses propagate through polymeric fluids, and, more generally, how macromolecular dynamics give rise to viscoelasticity are open questions vital to wide-ranging scientific and industrial fields. Here, to unambiguously connect polymer dynamics to force response, and map the deformation fields that arise in macromolecular materials, we present Optical-Tweezers-integrating-Differential -Dynamic-Microscopy (OpTiDMM) that simultaneously imposes local strains, measures resistive forces, and analyzes the motion of the surrounding polymers. Our measurements with blends of ring and linear polymers (DNA) and their composites with stiff polymers (microtubules) uncover an unexpected resonant response, in which strain alignment, superdiffusivity, and elasticity are maximized when the strain rate is comparable to the entanglement rate. Microtubules suppress this resonance, while substantially increasing elastic storage, due to varying degrees to which the polymers buildup, stretch and flow along the strain path, and configurationally relax induced stress. More broadly, the rich multi-scale coupling of mechanics and dynamics afforded by OpTiDDM, empowers its interdisciplinary use to elucidate non-trivial phenomena that sculpt stress propagation dynamics–critical to commercial applications and cell mechanics alike. 
    more » « less
  6. Sharma, Pradeep (Ed.)
    Abstract The cellular cytoskeleton relies on diverse populations of motors, filaments, and binding proteins acting in concert to enable nonequilibrium processes ranging from mitosis to chemotaxis. The cytoskeleton's versatile reconfigurability, programmed by interactions between its constituents, makes it a foundational active matter platform. However, current active matter endeavors are limited largely to single force-generating components acting on a single substrate—far from the composite cytoskeleton in cells. Here, we engineer actin–microtubule (MT) composites, driven by kinesin and myosin motors and tuned by crosslinkers, to ballistically restructure and flow with speeds that span three orders of magnitude depending on the composite formulation and time relative to the onset of motor activity. Differential dynamic microscopy analyses reveal that kinesin and myosin compete to delay the onset of acceleration and suppress discrete restructuring events, while passive crosslinking of either actin or MTs has an opposite effect. Our minimal advection–diffusion model and spatial correlation analyses correlate these dynamics to structure, with motor antagonism suppressing reconfiguration and demixing, while crosslinking enhances clustering. Despite the rich formulation space and emergent formulation-dependent structures, the nonequilibrium dynamics across all composites and timescales can be organized into three classes—slow isotropic reorientation, fast directional flow, and multimode restructuring. Moreover, our mathematical model demonstrates that diverse structural motifs can arise simply from the interplay between motor-driven advection and frictional drag. These general features of our platform facilitate applicability to other active matter systems and shed light on diverse ways that cytoskeletal components can cooperate or compete to enable wide-ranging cellular processes. 
    more » « less
  7. The cytoskeleton–a composite network of biopolymers, molecular motors, and associated binding proteins–is a paradigmatic example of active matter. Particle transport through the cytoskeleton can range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, recapitulating and understanding these properties–ubiquitous to the cytoskeleton and other out-of-equilibrium soft matter systems–remains challenging. Here, we combine light sheet microscopy with differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly, while higher actomyosin content increases the range of timescales over which transport is superdiffusive, it also markedly increases the degree of subdiffusion at short timescales and generally slows transport. Corresponding displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero modes, indicative of directed advection coupled with caged diffusion and hopping. At larger spatiotemporal scales, particles in active composites exhibit superdiffusive dynamics with scaling exponents that are robust to changing actomyosin fractions, in contrast to normal, yet faster, diffusion in networks without actomyosin. Our specific results shed important new light on the interplay between non-equilibrium processes, crowding and heterogeneity in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter systems to elucidate transport and dynamics across scales. 
    more » « less